Functional pentameric formation via coexpression of the Escherichia coli heat-labile enterotoxin B subunit and its fusion protein subunit with a neutralizing epitope of ApxIIA exotoxin improves the mucosal immunogenicity and protection against challenge by Actinobacillus pleuropneumoniae.

نویسندگان

  • Jung-Mi Kim
  • Seung-Moon Park
  • Jung-Ae Kim
  • Jin-Ah Park
  • Min-Hee Yi
  • Nan-Sun Kim
  • Jong-Lye Bae
  • Sung Goo Park
  • Yong-Suk Jang
  • Moon-Sik Yang
  • Dae-Hyuk Kim
چکیده

A coexpression strategy in Saccharomyces cerevisiae using episomal and integrative vectors for the Escherichia coli heat-labile enterotoxin B subunit (LTB) and a fusion protein of an ApxIIA toxin epitope produced by Actinobacillus pleuropneumoniae coupled to LTB, respectively, was adapted for the hetero-oligomerization of LTB and the LTB fusion construct. Enzyme-linked immunosorbent assay (ELISA) with GM1 ganglioside indicated that the LTB fusion construct, along with LTB, was oligomerized to make the functional heteropentameric form, which can bind to receptors on the mucosal epithelium. The antigen-specific antibody titer of mice orally administered antigen was increased when using recombinant yeast coexpressing the pentameric form instead of recombinant yeast expressing either the LTB fusion form or antigen alone. Better protection against challenge infection with A. pleuropneumoniae was also observed for coexpression in recombinant yeast compared with others. The present study clearly indicated that the coexpression strategy enabled the LTB fusion construct to participate in the pentameric formation, resulting in an improved induction of systemic and mucosal immune responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunogenicity of a Fusion Protein Comprising Coli Surface Antigen 3 and Labile B Subunit of Enterotoxigenic Escherichia coli

Background: Enterotoxigenic Escherichia coli (ETEC) strains are the major causes of diarrheal disease in humans and animals. Colonization factors and enterotoxins are the major virulence factors in ETEC pathogenesis. For the broad-spectrum protection against ETEC, one could focus on colonization factors and non-toxic heat labile as a vaccine candidate. Methods: A fusion protein is composed of a...

متن کامل

ESCHERICHIA COLI HEAT-LABILE TOXIN B SUBUNIT: CONSTRUCTION AND EVALUATION OF PLASMIDS PROVIDING CONTROLLED HIGH LEVEL PRODUCTION OF THE PROTEIN

With the plasmid DNA from a clinical isolate of enterotoxigenic Escherichia coli (ETEC) H 10407 as template, PCR-mediated cloning of the sequence encoding the heat-labile toxin B subunit (L T -B) has been carried out. Then this sequence was recloned into the pTrc 99A and pET23a expression vectors to give the pJasmids pTRCLTB and pETLTB, respectively. After induction, the former plasmid provides...

متن کامل

Construction and Expression of a Fused Gene for B Subunit of the Heat-Labile and a Truncated Form of the Heat-Stable Enterotoxins in Escherichia coli

Elaboration of different toxins by enterotoxigenic E. coli has been considered as one of the main virulence factors contributing to the manifestation of disease caused by these microorganisms. Various strategies have been employed to raise antibodies against these toxins as a line of defense. In this study, the 3’ terminus of the gene that codes for the binding subunit of the heat-labile entero...

متن کامل

Fusion of CtxB with StxB, Cloning and Expression of in Esherichia coli: A challenge for Improvement of Immune Response Against StxB

       Cholera toxin B subunit (CtxB) is a homopantameric, nontoxic subunit of cholera toxin that is responsible for its binding to the cell and has been known as a mucosal adjuvant for vaccines that could increase homoral and mocusal immunity response. In this work, the CtxB gene was fused to the StxB gene from Shigella dysenteriae type I a vaccine antigen candidate against t...

متن کامل

Surface-displayed expression of a neutralizing epitope of ApxIIA exotoxin in Saccharomyces cerevisiae and oral administration of it for protective immune responses against challenge by Actinobacillus pleuropneumoniae.

A neutralizing epitope fragment of ApxIIA toxin (ApxIIA#5) of the Korean Actinobacillus pleuropneumoniae serotype 2 strain was expressed and immobilized on the cell surface of Saccharomyces cerevisiae for efficient vaccine development. Expression of ApxIIA#5 was confirmed by Western blot analysis using cell-wall proteins, and the surface display of ApxIIA#5 was further visualized under confocal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical and vaccine immunology : CVI

دوره 18 12  شماره 

صفحات  -

تاریخ انتشار 2011